Zhu, L.-F.; Körmann, F.; Chen, Q.; Selleby, M.; Neugebauer, J.; Grabowski, B.: Accelerating ab initio melting property calculations with machine learning: application to the high entropy alloy TaVCrW. npj Computational Materials 10 (1), 274 (2024)
Zhu, L.-F.; Körmann, F.; Ruban, A. V.; Neugebauer, J.; Grabowski, B.: Performance of the standard exchange-correlation functionals in predicting melting properties fully from first principles: Application to Al and magnetic Ni. Physical Review B 101 (14), 144108 (2020)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. Physical Review B 96 (22), 224202 (2017)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Yi, S.; Letzig, D.; Pei, Z.; Zhu, L.-F.; Neugebauer, J.; Raabe, D.: Complementary TEM and ab ignition study on the ductilizing effect of Y in solid solution Mg–Y alloys. In: Proceedings of the 9th Intern. Conference on Magnesium alloys and their applications, pp. 467 - 472. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada, July 08, 2012 - July 12, 2012. (2012)
Zhu, L.-F.: Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential. The third generation (3G) Calphad at KTH, Stockholm, Sweden (2023)
Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential. CALPHAD L Conference, Cambridge, MA, USA (2023)
Zhu, L.-F.: Melting properties from ab initio using efficient TOR-TILD approach: Applications to refractory metals V, W and V–W alloy. CALPHAD XLVIII Conference, Stockholm, Sweden (2023)
Zhu, L.-F.: Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential and pyiron workflow. CM retreat, Ebernburg, Germany (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.