Research Groups

Header image sans right 1524475858

Research Groups

<div style="text-align: justify;">The key to establish a fundamental understanding of the links between synthesis, microstructure and properties is to characterize materials on all hierarchical levels of microstructure. Advanced Transmission Electron Microscopy offers versatile techniques enabling the analysis of atomic arrangements, microchemistry, defect structures, interfacial phenomena and precipitate structures. The development and application of advanced TEM techniques, including atomic resolution aberration-corrected imaging, analytical TEM and in-situ TEM are major areas of research.</div>

Advanced Transmission Electron Microscopy

The key to establish a fundamental understanding of the links between synthesis, microstructure and properties is to characterize materials on all hierarchical levels of microstructure. Advanced Transmission Electron Microscopy offers versatile techniques enabling the analysis of atomic arrangements, microchemistry, defect structures, interfacial phenomena and precipitate structures. The development and application of advanced TEM techniques, including atomic resolution aberration-corrected imaging, analytical TEM and in-situ TEM are major areas of research.
[more]
<div style="text-align: justify;">Alloys based on intermetallic phases comprise a new class of materials entering into application, e.g. TiAl compressor blades in the new GE<sub>NX</sub><sup>TM</sup> jet engines. The basis for any new material development is a sound understanding of the stability of the constituting phases in dependence of composition, temperature and time, i.e. knowledge of the respective phase diagrams.</div>

Intermetallic Materials

Alloys based on intermetallic phases comprise a new class of materials entering into application, e.g. TiAl compressor blades in the new GENXTM jet engines. The basis for any new material development is a sound understanding of the stability of the constituting phases in dependence of composition, temperature and time, i.e. knowledge of the respective phase diagrams.
[more]
<div style="text-align: justify;">Plasticity, fracture and fatigue are well known to determine the lifetime of technical components in daily-life applications (e.g. car engines, railroad wheels, jet-planes). A comprehensive understanding of life limiting mechanisms exists macroscopically. The ongoing trend for miniaturization of micro electro mechanical systems (MEMS) and microelectronic components requires a proper knowledge of materials also at the micrometer length scale, which today is still lacking.</div>

Nano-/ Micromechanics of Materials

Plasticity, fracture and fatigue are well known to determine the lifetime of technical components in daily-life applications (e.g. car engines, railroad wheels, jet-planes). A comprehensive understanding of life limiting mechanisms exists macroscopically. The ongoing trend for miniaturization of micro electro mechanical systems (MEMS) and microelectronic components requires a proper knowledge of materials also at the micrometer length scale, which today is still lacking.
[more]
<div style="text-align: justify;">“Tribology” is the study of friction and wear. Both mechanisms occur in the majority of transportation and manufacturing equipment and the friction induced energy loss is around 30-40%. Hence, the reduction of friction leads to a reduction of the energy requirement and therefore environmental and financial protection.</div>

Nanotribology

“Tribology” is the study of friction and wear. Both mechanisms occur in the majority of transportation and manufacturing equipment and the friction induced energy loss is around 30-40%. Hence, the reduction of friction leads to a reduction of the energy requirement and therefore environmental and financial protection.
[more]
<div style="text-align: justify;">Novel high-performance nanostructured thin films with superior structural and functional properties are required for advanced applications such as micro-/nanoelectronics, energy production, sensors and wear protection. Especially, mutually excluding structural properties such as high strength and ductility need to be combined, but also resistance to harsh environments such as corrosive environment, wear, and high temperature must be improved. Key to control the properties is the film architecture and microstructure. In order to trigger microstructure induced material properties control of the micro-scale porosity, atomic composition, average grain size, phase distribution, and layer/film thickness must be optimized.</div>

Thin Films & Nanostructured Materials

Novel high-performance nanostructured thin films with superior structural and functional properties are required for advanced applications such as micro-/nanoelectronics, energy production, sensors and wear protection. Especially, mutually excluding structural properties such as high strength and ductility need to be combined, but also resistance to harsh environments such as corrosive environment, wear, and high temperature must be improved. Key to control the properties is the film architecture and microstructure. In order to trigger microstructure induced material properties control of the micro-scale porosity, atomic composition, average grain size, phase distribution, and layer/film thickness must be optimized.
[more]
Find out more about our external research groups.

External Research Groups

Find out more about our external research groups. [more]
 
Go to Editor View
loading content