Women in Science

Women in Science

Men with wigs, men with beards, hardly any women. When you think of famous physicists, chemists or other natural scientists, images of men come to mind. We all know Newton and Einstein. Rightly so. But rather less Donna Strickland, who further developed the laser and was awarded the Nobel Prize in 2018. The first woman since 1963. Who knows Ada Lovelace, the software pioneer who formulated the principles of computer science as early as the 19th century? Or Stephanie Kwolek, the woman who developed Kevlar, which is nowadays used in bulletproof vests.


The Max Planck Society is committed to advancing women in science and offers a wide range of support services. And despite all the progress that has been made in recent years, there is a lack of women in science as inspiration for young female scientists. That's why we want to introduce female researchers at the MPIE: How did they get into research? What are their motivations or role models and what advice would they give to female pupils and students who consider going into research? 

Lena Frommeyer

Lena Frommeyer

"How does it work?" A simple question with far-reaching consequences if you want to answer it comprehensively. Things do not just happen. Not even in the world of materials. To really understand processes and what's behind them, motivated Lena Frommeyer to go into science.
 

She is doing her doctorate at the MPIE and is analyses how materials function at the atomic level. To this end, she is investigating grain boundaries in pure copper in the department of "Structure and Nano-/Micromechanics of Materials." Grain boundaries are interfaces within metals that form, for example, during the transition from a liquid to a solid state, and determine material properties such as electricity, hardness or plasticity. However, it has not been possible to demonstrate the atomic structure of such interfaces experimentally for a very long time: "It requires extremely high-resolution microscopes, which are not available at all institutes. However, the MPIE has the proper equipment that allows us to really understand the world of materials from the atomic level.", says Frommeyer.

Frommeyer's decision to work scientifically came during her master's thesis. A basic prerequisite for scientific work is the willingness to deal with a topic in a persistent and comprehensive manner. An additional attraction is the opportunity to analyse something that has not yet been researched and to gain new insights. After reading some of the MPIE's publications during her research for her master's thesis, an event at the institute offered her the opportunity to do her doctorate here: "Not only does the institute have a good scientific reputation, it's fun to work on a problem together with so many different colleagues from all over the world."

However, the path to a science degree and research is not self-evident, particularly for young women: "Especially when choosing a physics degree, you experience uncertainty and self-doubt. You ask yourself whether you are good enough to succeed in your studies. But you can't let your own insecurity stop you from going your own way and doing what you enjoy." At the same time, the path to research is also associated with challenges, such as balancing family and career through fixed-term contracts or the need to relocate more often for a scientific career.


There are also fewer good motivations for going into science, which should not be considered: "Going into science for financial or prestige reasons makes no sense. You need the willingness to become familiar with new topics and the ambition to learn to understand the world. Then research is exactly the right thing to do, because understanding the world around us is the first step towards changing it."
 
Laurine Choisez

Dr. Laurine Choisez

The path to a climate-neutral economy will have much to do with our energy production. Overcoming fossil fuels in favor of renewable energies remains a technical challenge. What if the sun doesn't shine? The wind doesn't blow? The question of alternatives and storage technologies is a central issue for tomorrow's energy supply.
 

A question that also Dr. Laurine Choisez deals with. After studying engineering and earning a master's degree in materials science, she initially worked in a different field of materials science. However, the increasingly pressing climate issue followed her: "I wanted to devote my energy, my time, to finding solutions for a sustainable future. That's why I applied to the MPIE, which has an excellent scientific reputation and good equipment to do optimal research.", Laurine says.

Sustainable metallurgy

She recently joined the “Sustainable Synthesis of Materials” research group in the department “Microstructure Physics and Alloy Design”. There, she is working on the microstructure of iron powder at the atomic level. Iron powder can be used as a recyclable fuel. Analyzing the microstructure of materials shows how small changes at the atomic scale can have a huge influence on the material properties and on the efficiency of subsequent processes applied on this material. For Laurine, the appeal of the work lies not only in contributing to climate protection: "The field has hardly been explored and there is so much more to discover. That's what makes the work here so exciting. Iron powder as a fuel has been worked on by engineers, but there is a lot that can be brought to this research topic from the material science part." The idea of this approach is to use the iron powder as a kind of refillable battery. Burning iron produces energy, and the burned iron is converted into re-burnable iron powder using renewable energy. A process that can also be used to store surplus energy from solar and wind power.

Following one's own interests

The low percentage of women in engineering studies has not stopped her. A brochure from the university advertised the study of engineering presenting many women. The brochure thus broke with the "male-heavy" reputation of the study and presented possible female role models as a matter of fact. For Laurine, however, studying and working in academia always meant following her own interests and matters of the heart. An advice she also gives to others who are interested in scientific work: "Don't be afraid to be the only one somewhere. Do it! And if you like what you do and follow your interests, you'll be good at what you do."
 
Go to Editor View