Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition and microstructure significantly differ from the traditional plain-carbon steels. Here we focus on a high-Mn and high-Al lightweight steel and unravel the effects of H-associated decohesion and localized plasticity on its H-induced catastrophic failure.
more