Shi, H.; Hachet, G.; Cheng, H.; Prithiv, T. S.; Ponge, D.; Sun, B.: Improving hydrogen embrittlement resistance of martensitic steel via interface B segregation. International Journal of Hydrogen Energy 164, 150954 (2025)
Srinivas Varanasi, R.; Waseda, O.; Syed, F. W.; Prithiv, T. S.; Gault, B.; Neugebauer, J.; Ponge, D.: Temperature and misorientation-dependent austenite nucleation at ferrite grain boundaries in a medium manganese steel: role of misorientation-dependent grain boundary segregation. Acta Materialia 296, 121242 (2025)
Bhattacharya, A.; Barik, R. K.; Nandy, S.; Sen, M.; Prithiv, T. S.; Patra, S.; Mitra, R.; Chakrabarti, D.; Ghosh, A.: Effect of martensite twins on local scale cleavage crack propagation in a medium carbon armor grade steel. Materialia 30, 101800 (2023)
Sukumar Prithiv, T.; Gault, B.; Li, Y.; Andersen, D.; Valle, N.; Eswara, S.; Ponge, D.; Raabe, D.: Austenite grain boundary segregation and precipitation of boron in low-C steels and their role on the heterogeneous nucleation of ferrite. Acta Materialia 252, 118947 (2023)
Prithiv, T. S.; Thirumurugan, G.; Madan, M.; Kamaraj, A.: Thermodynamic Assessment of Steelmaking Practices for the Production of Re-sulfur Steels. Transactions of the Indian Institute of Metals 73 (6), pp. 1595 - 1603 (2020)
Srikakulapu, K.; Morsdorf, L.; Tung, P.-Y.; Prithiv, T. S.; Herbig, M.: Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness. European Congress and Exhibition on Advanced Materials and Processes, EUROMAT 2021, online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.