Kanjilal, A.; Aliramaji, S.; Neuß, D.; Hans, M.; Schneider, J. M.; Best, J. P.; Dehm, G.: Microscale deformation of an intermetallic-metal interface in bi-layered film under shear loading. Scripta Materialia 263, 116665 (2025)
Jentner, R.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Local strength of bainitic and ferritic HSLA steel constituents understood using correlative electron microscopy and microcompression testing. Materials and Design 236, 112507 (2023)
Jentner, R.; Tsai, S.-P.; Welle, A.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Automated classification of granular bainite and polygonal ferrite by electron backscatter diffraction verified through local structural and mechanical analyses. Journal of Materials Research 38 (18), pp. 4177 - 4191 (2023)
Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLoS One 18 (2), e0281703 (2023)
Shi, J.; Ma, S.; Best, J. P.; Stolpe, M.; Wei, S.; Zhang, P.; Markert, B.: Gradient-enhanced modelling of deformation-induced anisotropic damage in metallic glasses. Journal of the Mechanics and Physics of Solids 167, 105020 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.