Jang, K.; Kim, M.-Y.; Jung, C.; Kim, S.-H.; Choi, D.; Park, S.-C.; Scheu, C.; Choi, P.-P.: Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography. Microscopy and Microanalysis 30 (6), pp. 1047 - 1056 (2024)
Yoo, B.; Jung, C.; Jang, K.; Jun, H.; Choi, P.-P.: Novel Ni-Co-based superalloys with high thermal stability and specific yield stress discovered by directed energy deposition. Materials and Design 238, 112607 (2024)
Park, H.; Jung, C.; Yi, S.; Choi, P.-P.: Elucidating the ball-milling-induced crystallization mechanism of amorphous NbCo1.1Sn via atomic-scale compositional analysis. Journal of Alloys and Compounds 968, 172014 (2023)
Jung, C.; Jeon, S.-j.; Lee, S.; Park, H.; Han, S.; Oh, J.; Yi, S.-H.; Choi, P.-P.: Reduced lattice thermal conductivity through tailoring of the crystallization behavior of NbCoSn by V addition. Journal of Alloys and Compounds 962, 171191 (2023)
Jung, C.; Zhang, S.; Cheng, N.; Scheu, C.; Yi, S.-H.; Choi, P.-P.: Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo1.1Sn. ACS Applied Materials and Interfaces 15 (39), pp. 46064 - 46073 (2023)
Kim, H.; Bobel, A.; Jung, C.; Olson, G. B.; Euh, K.: Strengthening model development and effects of low diffusing solutes to coarsening resistance in aluminum alloys. Materials Today Communications 36, 106636 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.