Sun, B.; Zhao, H.; Dong, X.; Teng, C.; Zhang, A.; Kong, S.; Zhou, J.; Zhang, X.; Tu, S.-T.: Current challenges in the utilization of hydrogen energy-a focused review on the issue of hydrogen-induced damage and embrittlement. Advances in Applied Energy 14, 100168 (2024)
Saksena, A.; Sun, B.; Dong, X.; Khanchandani, H.; Ponge, D.; Gault, B.: Optimizing site-specific specimen preparation for atom probe tomography by using hydrogen for visualizing radiation-induced damage. International Journal of Hydrogen Energy 50 (Part A), pp. 165 - 174 (2024)
Elkot, M.; Sun, B.; Zhou, X.; Ponge, D.; Raabe, D.: On the formation and growth of grain boundary k-carbides in austenitic high-Mn lightweight steels. Materials Research Letters 12 (1), pp. 10 - 16 (2024)
Shi, H.; Nandy, S.; Cheng, H.; Sun, B.; Ponge, D.: In-situ investigation of the interaction between hydrogen and stacking faults in a bulk austenitic steel. Acta Materialia 262, 119441 (2024)
Guo, Y.; Hu, J.; Han, Q.; Sun, B.; Wang, J.; Liu, C.: Microstructure diversity dominated by the interplay between primary intermetallics and eutectics for Al–Ce heat-resistant alloys. Journal of Alloys and Compounds 899, 162914 (2022)
Wang, X.; Liu, C.; Sun, B.; Ponge, D.; Jiang, C.; Raabe, D.: The dual role of martensitic transformation in fatigue crack growth. Proceedings of the National Academy of Sciences of the United States of America 119 (9), e2110139119 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…