Roscher, M.; Sun, Z.; Jägle, E. A.: Designing Al alloys for laser powder bed fusion via laser surface melting: Microstructure and processability of 7034 and modified 2065. Journal of Materials Processing Technology 326, 118334 (2024)
Pedrazzini, S.; Pek, M.; Ackerman, A.; Cheng, Q.; Ali, H.; Ghadbeigi, H.; Mumtaz, K.; Dessolier, T.; Britton, B.; Bajaj, P.et al.; Aime Jägle, E.; Gault, B.; London, A. J.; Galindo-Nava, E.: Effect of Substrate Bed Temperature on Solute Segregation and Mechanical Properties in Ti–6Al–4V Produced by Laser Powder Bed Fusion. Metallurgical and Materials Transactions A 54 (8), pp. 3069 - 3085 (2023)
Lee, D.-H.; Zhao, Y.; Lee, S. Y.; Ponge, D.; Aime Jägle, E.: Hydrogen-assisted failure in Inconel 718 fabricated by laser powder bed fusion: The role of solidification substructure in the embrittlement. Scripta Materialia 207, 114308 (2022)
Ikehata, H.; Jägle, E. A.: Evaluation of microstructure and tensile properties of grain-refined, Ti-alloyed ferritic stainless steel fabricated by laser powder bed fusion. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 818, 141365 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…