Surendralal, S.: Development of an ab initio computational potentiostat and its application to the study of Mg corrosion. Dissertation, Ruhr Universität Bochum (2020)
Vatti, A. K.: An ab initio study of muscovite mica and formation energy of ions in liquid water. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2016)
Bhogireddy, V. S. P. K.: Liquid metal induced grain boundary embrittlement: A multi-scale study. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2016)
Kenmoe, S.: Ab Initio Study of the Low-Index Non-Polar Zinc Oxide Surfaces in Contact with Water: from Single Molecules to Multilayers. Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, Bochum, Germany (2015)
Lange, B.: Limitierungen der p-Dotierbarkeit von Galliumnitrid: Eine Defektstudie von GaN:Mg auf Basis der Dichtefunktionaltheorie. Dissertation, Universität Paderborn, Paderborn, Germany (2012)
Hamou, F. R.: Numerical Investigation of Scanning Electrochemical Potential Microscopy (SECPM). Dissertation, Fakultät für Physik und Astronomie der Ruhr-Universität, Bochum, Germany (2010)
Abu-Farsakh, H.: Understanding the interplay between thermodynamics and surface kinetics in the growth of dilute nitride alloys from first principles. Dissertation, University of Paderborn, Paderborn, Germany (2010)
Marquardt, O.: Implementation and application of continuum elasticity theory and a k.p-model to investigate optoelectronic properties of semiconductor nanostructures. Dissertation, University of Paderborn, Paderborn, Germany (2010)
Grabowski, B.: Towards ab initio assisted materials design: DFT based thermodynamics up to the melting point. Dissertation, University of Paderborn, Paderborn, Germany (2009)
Torres, E.: DFT Study of Alkanethiol Self-assembled Monolayers on Gold(111) Surfaces. Dissertation, Ruhr-Universität-Bochum, Fakultät für Physik und Astronomie, Bochum, Germany (2009)
Dick, A.: Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces. Dissertation, University of Paderborn, Paderborn, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.