Surendralal, S.; Todorova, M.; Neugebauer, J.: Laterally Resolved Free Energy Profiles and Vibrational Spectra of Chemisorbed H Atoms on Pt(111). Journal of Chemical Theory and Computation 20 (5), pp. 2192 - 2201 (2024)
Surendralal, S.; Todorova, M.; Neugebauer, J.: Impact of Water Coadsorption on the Electrode Potential of H–Pt(1 1 1)-Liquid Water Interfaces. Physical Review Letters 126 (16), 166802 (2021)
Surendralal, S.; Todorova, M.; Finnis, M. W.; Neugebauer, J.: First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. Physical Review Letters 120 (24), 246801 (2018)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Atomic insights into fundamental processes at electrochemical solid/liquid interface by ab initio calculations. 38th Topical Meeting of the International Society of Electrochemistry: Nanomaterials in Electrochemistry, Manchester, UK (2024)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Ab Initio Calculations for electrified solid/liquid interfaces – Challenges, insights and Opportunities. GRC Aqueous Corrosion: Corrosion Challenges and Opportunities for the Energy Transition, New London, NH, USA (2024)
Todorova, M.; Surendralal, S.; Yang, J.; Neugebauer, J.: Using ab initio calculations to unravel atomistic processes at electrified solid/ liquid interfaces. 63rd Sanibel Symposium, St. Augustine, FL, USA (2024)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Insights into Electrified Solid/Liquid Interfaces from Ab initio and Atomistic Molecular Dynamics Simulations. CECAM - Young Researchers' School on Theory and Simulation in Electrochemical Conversion Processes, Paris, France (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…