Heinzl, C.; Hengge, K.; Perchthaler, M.; Hacker, V.; Scheu, C.: Insight into the Degradation of HT-PEMFCs Containing Tungsten Oxide Catalyst Support Material for the Anode. Journal of the Electrochemical Society 162 (3), pp. F280 - F290 (2015)
Ossiander, T.; Perchthaler, M.; Heinzl, C.; Scheu, C.: Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources 267, pp. 323 - 328 (2014)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopic insights into degradation processes in high temperature polymer electrolyte membrane fuel cells. Scandem 2015, Jyväskylä, Finland (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsche, M.; Scheu, C.: Material optimization for high-temperature polymer-electrolyte-membrane fuel cells. Material optimization for high-temperature polymer-electrolyte-membrane fuel cells, Duisburg, Germany (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Growth of novel Pt 3D networks on WO3-x electrodes and their effect on the performance of fuel cells. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopy studies of WO3-x based anodes for high temperature polymer electrolyte membrane fuel cells. IAM Nano 2015, Hamburg, Germany (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Degradation analysis of high temperature polymer electrolyte membrane fuel cells via electron microscopic techniques. TEM-UCA European Summer Workshop, Cadiz, Spain (2015)
Gleich, S.; Heinzl, C.; Ossiander, T.; Perchthaler, M.; Scheu, C.: Investigation of high-temperature polymer electrolyte membrane fuel cells by electron microscopy methods. CENS Workshop “Nanosciences: Great Adventures on Small Scales”, Venice, Italy (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…