Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Atomistic simulation study of grain boundary migration for different complexions in copper. DPG-Tagung, Virtual (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Dehm, G.; Ghidelli, M.: Toward engineered thin film metallic glasses with large mechanical properties: effect of composition and nanostructure. Seminar at Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Paris Nord University, Paris, France (2021)
Brink, T.; Frommeyer, L.; Freitas, R.; Frolov, T.; Pemma, S.; Liebscher, C.; Dehm, G.: Diffusionless congruent grain boundary phase transitions in metals: Simulation and experimental imaging. 2021 Fall Meeting of the European Materials Research
Society
, Virtual (2021)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution in cementite (Fe3C) during small-scale tribology. European Congress and Exhibition on Advanced Materials and Processes - EUROMAT 2021, Virtual (2021)
Frommeyer, L.; Brink, T.; Freitas, R.; Frolov, T.; Dehm, G.; Liebscher, C.: Congruent grain boundary phase transformations revealed by STEM in pure copper. Microscopy conference Joint Meeting of Dreiländertagungn & Multinational Congress on Microscopy MC 2021, virtual, Vienna, Austria (2021)
Dehm, G.: Experimental Insights in Congruent and Non-Congruent Grain Boundary Phase Transformations in Copper by Advanced STEM. International Seminars, Technion - Israel Institute of Technology (Israel), Purdue University (USA), virtual (2021)
Dehm, G.: Congruent and non-congruent grain boundary phase transformations in Copper studied by advanced STEM. Virtual Seminar of Institute Jozef Stefan, Ljubljana, Slovenia (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.