This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
The combination of high strength and ductility is vital for industrial products like line pipe or structural steels. Increasingly, such products are made of bainitic steels with complex microstructures [1-3]. Since such complex microstructures often consist of granular bainite and polygonal ferrite, and both phases are very difficult to distinguish under the light optical microscope, two different approaches have been applied [4-5].
As a first approach, nanoindentation tests and extreme property mapping (XPM) were used, which were additionally analysed using k-means clustering. In addition, an automatised MATLABMTEX tool was created to determine the misorientation angle within each grain, which enables the differentiation between both phases [5-7]. Furthermore, micropillar compression tests were applied on both constituents to understand the deformation process by mechanism-based models. The critical resolved shear stress (CRSS) and the corresponding activated slip systems will be used as a decisive criterion.
Subsequently, the relevant parameters to describe the representative behaviour of real microstructures can be used as an input for a computational material model to be implemented in the crystal plasticity simulation tool DAMASK [8].
This project is in cooperation and supported by Dillinger (AG der Dillinger Hüttenwerke).
Fig. 1: The granular bainite has been separated by the kernel average misorientation threshold. a) the detected granular bainite grains (the low angle grain boundaries are displayed as red lines) show also a higher kernel average misorientation compared to polygonal ferrite grains in b).
Fig. 1: The granular bainite has been separated by the kernel average misorientation threshold. a) the detected granular bainite grains (the low angle grain boundaries are displayed as red lines) show also a higher kernel average misorientation compared to polygonal ferrite grains in b).
Fig. 2: According to the crystallographic orientation of the tested grain, the slip planes are predicted for all three slip families which can be active due to the highest Schmid factor a). In comparison with a) the {112} slip plane was activated in b) during this microcompression test.
Fig. 2: According to the crystallographic orientation of the tested grain, the slip planes are predicted for all three slip families which can be active due to the highest Schmid factor a). In comparison with a) the {112} slip plane was activated in b) during this microcompression test.
Y. W. Chen et al., “Phase quantification in low carbon Nb-Mo bearing steel by electron backscatter diffraction technique coupled with kernel average misorientation
Mater. Charact., vol. 139, no. September 2017, pp. 49–58, 2018
Franz Roters, Martin Diehl, Pratheek Shanthraj, Philip Eisenlohr, Jan Christoph Reuber, Su Leen Wong, Tias Maiti, Alireza Ebrahimi, Thomas Hochrainer, Helge-Otto Fabritius, Svetoslav D. Nikolov, Martin Friák, Noriki Fujita, Nicolò Grilli, Koenraad G.F. Janssens, Nan Jia, Piet Kok, Duancheng Ma, Felix Meier, Ewald Werner, Markus Stricker, Daniel M. Weygand, and Dierk Raabe, "DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale," Computational Materials Science 158, 420-478 (2019).
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
We plan to investigate the rate-dependent tensile properties of 2D materials such as HCP metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
In this project, we aim at significantly enhancing the strength-ductility combination of quinary high-entropy alloys (HEAs) with five principal elements by simultaneously introducing interstitial C/N and the transformation induced plasticity (TRIP) effect. Thus, a new class of alloys, namely, interstitially alloyed TRIP-assisted quinary (five-component) HEAs is being developed.