Srinivas Varanasi, R.; Waseda, O.; Syed, F. W.; Prithiv, T. S.; Gault, B.; Neugebauer, J.; Ponge, D.: Temperature and misorientation-dependent austenite nucleation at ferrite grain boundaries in a medium manganese steel: role of misorientation-dependent grain boundary segregation. Acta Materialia 296, 121242 (2025)
Varanasi, R. S.; Gault, B.; Ponge, D.: Effect of Nb micro-alloying on austenite nucleation and growth in a medium manganese steel during intercritical annealing. Acta Materialia 229, 117786 (2022)
Varanasi, R. S.; Zaefferer, S.; Sun, B.; Ponge, D.: Localized deformation inside the Lüders front of a medium manganese steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 824, 141816 (2021)
Sun, B.; Ma, Y.; Vanderesse, N.; Srinivas Varanasi, R.; Song, W.; Bocher, P.; Ponge, D.; Raabe, D.: Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface. Acta Materialia 178, pp. 10 - 25 (2019)
Varanasi, R. S.: Mechanisms of refinement and deformation of novel ultrafine-grained medium manganese steels with improved mechanical properties. Dissertation, Ruhr-Universität Bochum (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…