Spiegel, M.: Corrosion protection and electronic conductivity: Spinel forming stainless steels as CCC for MCFC. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2003)
Parezanovic, I.; Spiegel, M.: Surface modification of different Fe–Si and Fe–Mn alloys by oxidation/reduction treatments. Eurocorr 2003, Budapest, Hungary (2003)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Spiegel, M.: Factors affecting the high temperature corrosion resistance of coatings in waste fired plant. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Spiegel, M.; Parezanovic, I.; Strauch, E.; Grabke, H. J.: Spinel forming stainless steels as possible current collector materials for molten carbon ate fuel cells. Fuel Cells Science and Technology, Amsterdam, The Netherlands (2002)
Spiegel, M.; Warnecke, R.: Korrosion hochlegierter Stähle und nichtmetallischer Werkstoffe unter Müll verbrennungsbedingungen. VDI Fachtagung: ‚Korrosion in energieerzeugenden Anlagen’, Würzburg (2002)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Invited lecture on the Workshop: ‘Life cycle issues in advanced energy systems’, Woburn, UK (2002)
Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Conference-Aqueous Corrosion, New London, NH, USA (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.