Ostwald, C.; Grabke, H. J.: Initial Oxidation and Chromium Diffusion. I. Effects of Surface Working on 9-20% Cr Steels. Corrosion Science 46 (5), pp. 1113 - 1127 (2004)
Grabke, H. J.; Spiegel, M.; Zahs, A.: Role of Alloying Elements and Carbides in the Chlorine-induced Corrosion of Steels and Alloys. Materials Research 7 (1), pp. 89 - 95 (2004)
Grabke, H.-J.; Tôkei, Z. S.; Ostwald, C.: Initial Oxidation of a 9 % CrMo- and a 12 % CrMoV – Steel. Steel Research International 75 (1), pp. 38 - 46 (2004)
Grabke, H. J.; Müller-Lorenz, E. M.; Zinke, M.: Metal Dusting Behaviour of Welded Ni-Base Alloys with Different Surface Finish. Material and Corrosion 54, pp. 785 - 792 (2003)
Pippel, E.; Woltersdorf, J.; Grabke, H. J.: Microprocesses of Metal Dusting on Iron - Nickel Alloys and their Dependence on Composition. Material and Corrosion 54 (10), pp. 747 - 751 (2003)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Materials at High Temperatures 20, 2, pp. 153 - 159 (2003)
Moszynski, D.; Grabke, H. J.; Schneider, A.: Effect of sulphur on the formation of graphite at the surface of carburized iron. Surface and Interface Analysis 34, pp. 380 - 383 (2002)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.