Li, Y. S.; Niu, Y.; Spiegel, M.: High temperature interaction of Al/Si-modified Fe–Cr alloys with KCl. Corrosion Science 49 (4), pp. 1799 - 1815 (2007)
Li, Y. S.; Spiegel, M.; Shimada, S.: Corrosion behaviour of model alloys with NaCl–KCl coating. Materials Chemistry and Physics 93 (1), p. 217 - 217 (2005)
Li, Y. S.; Spiegel, M.: Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2/KCl melt at 400-450 °C. Corrosion Science 46, 8 (2004)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. In: Corrosion Science in the 21th Century, 1. UMIST, Manchester, UK (2003)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Li, Y. S.; Spiegel, M.: High temperature interactions of pure Cr with KCl. 6th Int. Symposium on High temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.