Sarma, D.; Pegu, D.; Saikia, U.; Sahariah, M. B.: Exploring the effect of Ti on He clustering in CuZr metallic alloy. Physica Scripta 100 (7), 075918 (2025)
Kamachali, R. D.; Wallis, T.; Ikeda, Y.; Saikia, U.; Ahmadian, A.; Liebscher, C.; Hickel, T.; Maass, R.: Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system. Scripta Materialia 238, 115758 (2024)
Saikia, U.; Sahariah, M. B.; Dutta, B.; Pandey, R.: Structure, stability and defect energetics of interfaces formed between conventional and transformed phases in Cu–Nb layered nanocomposite. Physica Scripta 98 (6), 065959 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…