Wong, S. L.; Laptyeva, G.; Brüggemann, T.; Karhausen, K.-F.; Roters, F.; Raabe, D.: An improved unified internal state variable model exploiting first principle calculations for flow stress modeling of aluminium alloys. International Conference on Aluminum Alloys (ICAA), Montreal, Canada (2018)
Niendorf, T.; Wegener, T.; Li, Z.; Raabe, D.: On the fatigue behavior of dual-phase high-entropy alloys in the low-cycle fatigue regime. Fatique 2018, Poitiers, France (2018)
Kontis, P.; Raabe, D.; Gault, B.: The role of systematic characterization on the development of new nickel-based superalloys. Industrial Colloquium - SFB/TR 103 „From Atoms to Turbine Blades“ , Fürth, Germany (2018)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Preventing the Coarsening of Al3Sc Precipitates by the Formation of a Zr-rich Shell During Laser Metal Deposition. TMS2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Kwiatkowski da Silva, A.; Inden, G.; Ponge, D.; Gault, B.; Raabe, D.: Precipitation of CFCC-TmC Carbides during Tempering at 450°C of a Medium Mn Steel: A Thermodynamic and Kinetic Study Followed by Atom Probe Tomography. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Li, Z.; Raabe, D.: Tuning Phase Transformation in Compositionally Complex Alloys for Superior Mechanical Properties. TMS 2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…