Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.: Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica 51 (2), pp. 429 - 441 (2016)
Friák, M.; Tytko, D.; Holec, D.; Choi, P.-P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J.: Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New Journal of Physics 17 (9), 093004 (2015)
Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.: Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme. Modelling and Simulation in Materials Science and Engineering 23 (4), 045005 (2015)
Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity 66, pp. 31 - 45 (2015)
Reuber, J. C.; Eisenlohr, P.; Roters, F.; Raabe, D.: Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Materialia 71, pp. 333 - 348 (2014)
Blum, W.; Dvořák, J.; Král, P. T. K.; Eisenlohr, P.; Sklenička, V.: Effect of grain refinement by ECAP on creep of pure Cu. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 590, pp. 423 - 432 (2014)
Eisenlohr, P.; Diehl, M.; Lebensohn, R. A.; Roters, F.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity 46, pp. 37 - 53 (2013)
Wang, L.; Barabash, R.; Bieler, T.; Liu, W.; Eisenlohr, P.: Study of {1121} Twinning in alpha-Ti by EBSD and Laue Microdiffraction. Metallurgical and Materials Transactions A 44 (8), pp. 3664 - 3674 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…