Microstructure And Mechanical Properties Of Additively Manufactured Pearl® Micro AD730®. World PM 2022 Congress and Exhibition, Code 188680, Lyon, France, October 09, 2022 - October 13, 2022. (2022)
Lilensten, L.; Antonov, S.; Raabe, D.; Tin, S.; Gault, B.; Kontis, P.: Deformation of Borides in Nickel-based Superalloys: a Study of Segregation at Dislocations. M & M 2019 - Microscopy & Microanalysis, Portland, OR, USA, August 04, 2019 - August 08, 2019. Microscopy and Microanalysis 25, S2 Ed., pp. 2538 - 2539 (2019)
Antonov, S.: Understanding phase transformations at boundaries and interfaces in β-Titanium alloys at the near-atomic scale. Conference on Possibilities and Limitations of Quantitative Materials Modeling and Characterization, Bernkastel-Kues, Germany (2021)
Antonov, S.: Understanding the Defect-Solute Interactions during Deformation of Superalloys. Colloquium, Oak Ridge National Laboratory, online, Oak Ridge, TN, USA (2021)
Antonov, S.: Towards Improved Superalloy Performance via Defect Engineering. Department of Mechanical Colloquium, Industrial, and Manufacturing Engineering, Oregon State University, online, Corvallis, OR, USA (2021)
Antonov, S.; Shi, R.; Li, D.; Kloenne, Z.; Zheng, Y.; Fraser, H. L.; Raabe, D.; Gault, B.: Atom Probe Tomographic Study of Precursor Metastable Phases and Their Influence on a Precipitation in the Metastable ß-titanium Alloy, Ti–5Al–5Mo–5V–3Cr. TMS 2021 Annual Meeting & Exhibition, online, Pittsburgh, PA, USA (2021)
Antonov, S.: Understanding Superalloys on the Atomic Scale. Department of Materials Science Colloquium, University of Illinois Urbana-Champaign, online, Urbana, IL, USA (2021)
Antonov, S.: Overview of the Damage Accumulation Mechanisms During Non-isothermal Creep of Ni-based superalloys. Seminar, Exponent, online, Atlanta, GA, USA (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
A wide range of steels is nowadays used in Additive Manufacturing (AM). The different matrix microstructure components and phases such as austenite, ferrite, and martensite as well as the various precipitation phases such as intermetallic precipitates and carbides generally equip steels with a huge variability in microstructure and properties.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…