Pan, Y.; Dong, A.; Zhou, Y.; Antonov, S.; Chen, Z.; Du, D.; Sun, B.: Synergistic enhancement of high temperature strength and ductility with a novel g/e dual-phase hetero-nanostructure in NiCoCr-based alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 877, 145142 (2023)
Zhu, Y.; Heo, T. W.; Rodriguez, J. N.; Weber, P. K.; Shi, R.; Baer, B. J.; Morgado, F. F.; Antonov, S.; Kweon, K. E.; Watkins, E. B.et al.; Savage, D. J.; Chapman, J. E.; Keilbart, N. D.; Song, Y.; Zhen, Q.; Gault, B.; Vogel, S. C.; Sen-Britain, S. T.; Shalloo, M. G.; Orme, C.; Bagge-Hansen, M.; Hahn, C.; Pham, T. A.; Macdonald, D. D.; Qiu, R. S.; Wood, B. C.: Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling. Current Opinion in Solid State and Materials Science 26, 101020 (2022)
Zhang, C.; Yu, H.; Antonov, S.; Li, W.; He, J.; Zhi, H.; Su, Y.: Alleviating the strength-ductility trade-off dilemma in high manganese steels after hydrogen charging by adjusting the gradient distribution of twins. Corrosion Science 207, 110579 (2022)
Tan, Q.; Yan, Z.; Li, R.; Ren, Y.; Wang, Y.; Gault, B.; Antonov, S.: In-situ synchrotron-based high energy X-ray diffraction study of the deformation mechanism of δ-hydrides in a commercially pure titanium. Scripta Materialia 213, 114608 (2022)
Tan, Q.; Yan, Z.; Wang, H.; Dye, D.; Antonov, S.; Gault, B.: The role of β pockets resulting from Fe impurities in hydride formation in titanium. Scripta Materialia 213, 114640 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…