Song, J.; Kostka, A.; Veehmayer, M.; Raabe, D.: Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Materials Science and Engineering A 528, pp. 2641 - 2647 (2011)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Structural characterization and analysis of interface formed by explosion cladding of titanium to low carbon steel. 19th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM), Moscow, Russia (2012)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Song, J.: Explosive Cladding of Titanium onto Low Carbon Steel. International SurMat Workshop, Department of Material Science and Engineering, Ruhr-Universität Bochum, Bochum, Germany (2008)
Song, J.: Microstructure and properties of interfaces formed by explosion cladding of Titanium to low Carbon steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Deviations from the ideal, stoichiometric composition of tcp (tetrahedrally close-packed) intermetallic phases as, e.g., Laves phases can be partially compensated by point defects like antisite atoms or vacancies, but also planar defects may offer an opportunity to accommodate excess atoms.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…