Swaminathan, S.; Spiegel, M.; Rohwerder, M.: Effect of annealing conditions on the selective oxidation of quarternary model alloy. 4th International Conference on Diffusion in Solids and Liquids, Barcelona, Spain (2008)
Swaminathan, S.; Koll, T.; Pohl, M.; Spiegel, M.: Hot-dip galvanizing simulation of model alloys and industrial steel grades: Correlation between surface chemistry and wettability. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Swaminathan, S.; Spiegel, M.: Effect of alloy composition on the selective oxidation of ternary Fe–Si–Cr, Fe–Mn–Cr model alloys. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Auinger, M.; Swaminathan, S.; Rohwerder, M.: The Influence of Oxide Formation on the Diffusion Properties in Iron Alloys - The Thermogravimetric Behaviour in Early Stages of Oxidation. Gordon-Kenan Research Seminar on High Temperature Corrosion and Gordon-Research Conference on High Temperature Corrosion, New London, NH, USA (2011)
Vogel, D.; Swaminathan, S.; Rohwerder, M.; Renner, F. U.: Possibilities for high-temperature corrosion at MPIE. International Symposium on High-temperature Oxidation and Corrosion, Zushi, Japan (2010)
Vogel, A.; Swaminathan, S.; Vogel, D.; Rohwerder, M.: Novel Setup for Metal/Gas Reactions at High Temperature. 6th International Conference on Diffusion in Solids and Liquids: Mass Transfer, Heat Transfer and Microstructure and Properties, Paris, France (2010)
Swaminathan, S.: Selective surface oxidation and segregation upon short term annealing of model alloys and industrial steel grades. Dissertation, Ruhr-Universität, Fakultät für Physik und Astronomie, Bochum, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…