Winning, M.: 3D EBSD measurements in ultra fine grained Cu 0.17wt% Zr obtained from ECAP. Seminar talk, Carnegie Mellon University, Pittsburgh, PA, USA (2008)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Three-dimensional tomographic EBSD measurements of the crystal topology in heavily deformed ultra fine grained pure Cu and Cu–0.17wt%Zr obtained from ECAP and HPT. DPG Frühjahrstagung 2008, Berlin, Germany (2008)
Winning, M.: Grain boundary engineering by application of mechanical stresses. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
Winning, M.: Korngrenzen auf Wanderschaft: Wege zum Design metallischer Werkstoffe. Colloquia Academia, Akademie der Wissenschaften und der Literatur, Mainz, Germany (2007)
Winning, M.: Korngrenzen auf Wanderschaft: Wege zum Design metallischer Werkstoffe. Colloquia Academia, Akademie der Wissenschaften und der Literatur, Mainz, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…