Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: Recrystallization and grain growth in ultra fine grained CuZr alloy processed by high pressure torsion. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Winning, M.; Khorashadizadeh, A.; Raabe, D.: Characterization of the microstructure of ultra fine-grained materials processed by severe plastic deformation methods in the deformed and the annealed state. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Winning, M.; Raabe, D.: Fast, physically-based algorithms for on-line calculations of texture and anisotropy during fabrication of steel sheets. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Winning, M.; Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.: Recrystallization and grain growth in ultra fine grained materials produced by high pressure torsion. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Uyar, F.; Wilson, S.; Winning, M.; Rollett, A. D.: Interface Texture Evolution During Grain Growth Under the Effect of Stress. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Uyar, F.; Gruber, J.; Lee, S.; Winning, M.; Rollett, A. D.: Stagnation of Thin Film Grain Growth under the Effect of a Stress Field. Materials Science & Technology 2009 Conference, Pittsburgh, PA, USA (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: Microstructure and Texture evolution during high pressure torsion of a CuZr alloy. Euromat 2009, Glasgow, UK (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: Microstructure and Texture evolution during high pressure torsion of a CuZr alloy. 15th International Conference on the Strength of Materials ICSMA 2009, Dresden, Germany (2009)
Khorashadizadeh, A.; Winning, M.; Zaefferer, S.; Raabe, D.: 3D tomographic EBSD characterization of crystal topology in a CuZr alloy processed by equal channel angular pressing. Interdisciplinary Symposium on 3D Microscopy, Interlaken, Switzerland (2009)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Microstructure and texture evolution during high pressure torsion of a Cu0.17wt%Zr alloy. DPG Frühjahrstagung 2009, Dresden, Germany (2009)
Schulz, S.; Winning, M.; Raabe, D.: A modified cellular automaton for the simulation of recrystallization in aluminum. ICAA 11 - International Conference on Aluminium Alloys 2008, Aachen, Germany (2008)
Khorashadizadeh, A.; Raabe, D.; Winning, M.: Three-dimensional tomographic EBSD measurements of the crystal topology in heavily deformed ultra fine grained pure Cu and Cu-0.17wt%Zr obtained from ECAP and HPT. 4th International Conference on Nanomaterials by Severe Plastic Deformation nanoSPD 4, Goslar, Germany (2008)
Brahme, A.; Winning, M.; Raabe, D.: Texture Component Model for Predicting Recrystallization Textures. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Winning, M.; Raabe, D.: Influence of Grain Boundary Mobility on Texture Evolution during Recrystallization. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.