Li, Y. S.; Niu, Y.; Spiegel, M.: High temperature interaction of Al/Si-modified Fe–Cr alloys with KCl. Corrosion Science 49 (4), pp. 1799 - 1815 (2007)
Li, Y. S.; Spiegel, M.; Shimada, S.: Corrosion behaviour of model alloys with NaCl–KCl coating. Materials Chemistry and Physics 93 (1), p. 217 - 217 (2005)
Li, Y. S.; Spiegel, M.: Models describing the degradation of FeAl and NiAl alloys induced by ZnCl2/KCl melt at 400-450 °C. Corrosion Science 46, 8 (2004)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. In: Corrosion Science in the 21th Century, 1. UMIST, Manchester, UK (2003)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Li, Y. S.; Spiegel, M.: High temperature interactions of pure Cr with KCl. 6th Int. Symposium on High temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…