Borissov, D.; Pareek, A.; Renner, F. U.; Rohwerder, M.: Electrodeposition of Zn and Au–Zn alloys at low temperature in an ionic liquid. Physical Chemistry Chemical Physics 12 (9), pp. 2059 - 2062 (2010)
Borissov, D.; Isik-Uppenkamp, S.; Rohwerder, M.: Fabrication of iron nanowire arrays by electrodeposition into porous alumina. The Journal of Physical Chemistry C 113 (8), pp. 3133 - 3138 (2009)
Borissov, D.; Rohwerder, M.: Fundamental Investigation of the Effect of Oxides on the Reaction Kinetics During Hot Dip Galvanizing. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Van De Putte, T.; Borissov, D.; Loison, D.; Penning, J.; Rohwerder, M.; Claessens, S.: Reduction of SiO2 Surface Oxides by Solute Carbon to Improve the Galvanizability of Si alloyed AHSS. International Conference on New Developments in Advanced High Strength Sheet Steels, Orlando, FL, USA (2007)
Borissov, D.; Renner, F. U.; Rohwerder, M.: Zn–Mg–Al alloy electrodeposition from ionic liquids. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…