Dsouza, R.; Poul, M.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free computation of finite temperature material properties in isochoric and isobaric ensembles using the mean-field anharmonic bond model. Physical Review B 109, 064108 (2024)
Dsouza, R.; Huber, L.; Grabowski, B.; Neugebauer, J.: Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping. Physical Review B 105 (18), 184111 (2022)
Dsouza, R.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free thermodynamics in bulk crystalline metals from the mean-field anharmonic bond model. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.