Renner, F. U.: From corrosion to batteries: Studies on electrochemical interfaces. Seminar talk at SLAC National Accelerator Laboratory, Stanford, CA, USA (2012)
Duarte, M. J.; Renner, F. U.; Klemm, J.: Corrosion analysis and corrosion breakdown of Fe-based amorphous and nanocrystalline alloys. 220th ECS Meeting and Electrochemical Energy Summit, Boston MA, USA (2011)
Renner, F. U.: Oberflächen auf der atomaren Skala: Entlegierung als ein Beispiel aus der Korrosion. Colloquium, Technische Universität Hamburg-Harburg, Germany (2011)
Renner, F. U.: Corrosion behaviour of Fe-Al(-X) alloys in steam. Deutsche Gesellschaft für Materialkunde - DGM, Technical Committee Meeting, Technische Universität Dresden, Germany (2011)
Renner, F. U.; Vogel, D.; Vogel, A.; Palm, M.: Main Scale formation of Fe-Al based model alloys in steam. International Symposium on High-temperature Oxidation and Corrosion, Zushi, Japan (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…