Varnik, F.: Can microscale wall roughness trigger unsteady/chaotic flows ? 5th International Workshop on Complex Systems, American Institute of Physics, Sendai, Japan (2007)
Varnik, F.: Two-dimensional lattice Boltzmann studies of the effects of wall roughness/channel design on the flow at moderate Reynolds numbers. IUTAM Symposium on Advances in Micro-& Nanofluidics, Dresden, Germany (2007)
Varnik, F.: Lattice Boltzmann studies of binary liquids and liquid-vapor systems beyond equilibrium. Leibniz Institute for Polymer Research, Dresden, Germany (2007)
Varnik, F.: A comprehensive introduction to lattice Boltzmann methods in materials science and engineering. Fritz-Haber Institut der Max-Planck Gesellschaft, Berlin, Germany (2007)
Varnik, F.: Non linear rheology and dynamic yielding in a simple glass: A molecular dynamics study. School of Physics, University of Edinburgh, UK (2006)
Varnik, F.: Chaotic lubricant flows in metal forming: Some new insights from lattice Boltzmann simulations. Seminar Talk at MPI für Eisenforschung GmbH, Düsseldorf, Germany (2006)
Varnik, F.: Lattice Boltzmann simulations of moderate Reynolds number flows in strongly confined channels: The role of the wall roughness. Massachussets Institute of Technology (MIT), Boston, MA, USA (2006)
Varnik, F.: MD simulations of steady state yielding in a simple glass. 31st Middle Euoropean Cooperation on Statistical Physics (MECO31), Primošten, Croatia (2006)
Varnik, F.: Rheological response of a model glass: Theory versus computer simulation. 2nd International workshop on dynamics in viscous liquids, Mainz, Germany (2006)
Varnik, F.; Raabe, D.: Lattice Boltzmann studies of flow instability in microchannels: The role of the surface roughness/topology. Laboratoire de Physique et de la Matiere Condensee et Nanostructure, Universite Claude Bernard, Lyon1, France (2005)
Varnik, F.: Complex rheology of simple systems: Shear thinning, dynamic versus static yielding and flow heterogeneity. CECAM-Workshop on Simulating deformed glasses and melts: From simple liquids to polymers, Lyon, France (2005)
Varnik, F.: Rheology of dense amorphous systems: Recent theories versus molecular dynamics simulations. 5th International Discussion Meeting on Relaxation in Complex Systems, Lille, France (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.