Huang, S.; Tegg, L.; Yamini, S. A.; Tuli, V.; Burr, P.; McCarroll, I.; Yang, L.; Moore, K. L.; Cairney, J. M.: Atom probe study of second-phase particles in Zircaloy-4. Journal of Nuclear Materials 616, 156049 (2025)
Huang, S.; Tegg, L.; Yamini, S. A.; Chen, L.; Burr, P.; Qu, J.; Yang, L.; Mccarroll, I.; Cairney, J. M.: Atomic distribution of alloying elements and second phase particles (SPPs) identification in Optimised ZIRLO. Acta Materialia 297, 121365 (2025)
Schwarz, T.; Birbilis, N.; Gault, B.; McCarroll, I.: Understanding the Al diffusion pathway during atmospheric corrosion of a Mg-Al alloy using atom probe tomography. Corrosion Science 252, 112951 (2025)
Yang, L.; Chen, E. Y.-S.; Qu, J.; Garbrecht, M.; McCarroll, I.; Mosiman, D. S.; Saha, B.; Cairney, J. M.: Improved atom probe specimen preparation by focused ion beam with the aid of multi-dimensional specimen control. Microstructures 5 (1), 2025007 (2025)
Torkornoo, S.; Bohner, M.; McCarroll, I.; Gault, B.: Optimization of Parameters for Atom Probe Tomography Analysis of β-Tricalcium Phosphates. Microscopy and Microanalysis 30 (6), pp. 1074 - 1082 (2024)
Schwarz, T.; Yu, W.; Zhan, H.; Gault, B.; Gourlay, C.; McCarroll, I.: Uncovering Ce-rich clusters and their role in precipitation strengthening of an AE44 alloy. Scripta Materialia 232, 115498 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…