Cantergiani, E.; Riedel, M.; Karhausen, K. F.; Roters, F.; Quadfasel, A.; Falkinger, G.; Engler, O.; Rabindran, R.: Simulations of Texture Evolution in the Near-Surface Region During Aluminum Rolling. Metallurgical and Materials Transactions A 55 (9.0), pp. 3327 - 3350 (2024)
Cantergiani, E.; Weißensteiner, I.; Grasserbauer, J.; Falkinger, G.; Pogatscher, S.; Roters, F.: Influence of Hot Band Annealing on Cold-Rolled Microstructure and Recrystallization in AA 6016. Metallurgical and Materials Transactions A 54, pp. 75 - 96 (2023)
Cantergiani, E.; Falkinger, G.; Roters, F.: Crystal plasticity simulations of Cube in-grain fragmentation in aluminium: Influence of crystal neighbor orientation. International Journal of Solids and Structures 252, 111801 (2022)
Shah, V.; Sedighiani, K.; Van Dokkum, J. S.; Bos, C.; Roters, F.; Diehl, M.: Coupling crystal plasticity and cellular automaton models to study meta- dynamic recrystallization during hot rolling at high strain rates. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 849, 143471 (2022)
Cantergiani, E.; Falkinger, G.; Mitsche, S.; Theissing, M.; Klitschke, S.; Roters, F.: Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloys. Metallurgical and Materials Transactions A 53, pp. 2832 - 2860 (2022)
Fujita, N.; Yasuda, K.; Ishikawa, N.; Diehl, M.; Roters, F.; Raabe, D.: Characterizing Localized Microstructural Deformation of Multiphase Steel by Crystal Plasticity Simulation with Multi-Constitutive Law. Journal of the Japan Society for Technology of Plasticity 63 (732), pp. 1 - 8 (2022)
Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D.: An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves. International Journal of Plasticity 134, 102779 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…