Bai, Y.; Santos, D. A.; Rezaei, S.; Stein, P.; Banerjee, S.; Xu, B.-X.: A chemo-mechanical damage model at large deformation: numerical and experimental studies on polycrystalline energy materials. International Journal of Solids and Structures 228, 111099 (2021)
Umate, K. S.; Bai, Y.; Svendsen, B.; Raabe, D.: Phase-field model for Hydrogen based direct reduction of iron oxides: Role of porosity. TMS - Algorithm Development in Materials Science and Engineering, Orlando, FL, USA (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.