Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. Plasticity ’14: The 20th International Symposium on Plasticity & Its Current Applications, Nassau, Bahamas, USA (2014)
Kords, C.; Eisenlohr, P.; Roters, F.: On a proper account of plastic size effects in continuum models including the flux of dislocation density. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. 11th World Congress on Computational Mechanics (WCCM XI) and 5th European Conference on Computational Mechanics (ECCM V)
, Barcelona, Spain (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in singlecrystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. EMMC-14, 14th European Mechanics of Materials Conference
, Gothenburg, Sweden (2014)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. 2nd International Conference High Manganese Steel, HMnS 2014
, Aachen, Germany (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. 17th U.S. National Congress on Theoretical and Applied Mechanics Michigan State University, East Lansing, MI, USA (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Shanthraj, P.; Roters, F.; Eisenlohr, P.; Raabe, D.: Integrated in-situ experiments – full field crystal plasticity simulations to analyze stress – strain partitioning in multi-phase alloys. Nanomechanical Testing in Materials Research and Development IV, Olhão, Algarve, Portugal (2013)
Roters, F.: Modellierung von Verformungsvorgängen auf Basis der Kristallplastizität. Herbstschule des SFB 799 TRIP-Matrix-Composite, Leipzig, Germany (2013)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: Stress-strain partitioning in martensitic-ferritic steels analyzed by integrated full-field crystal plasticity simulations and high resolution in situ experiments. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.