Stein, F.; He, C.: The Usefulness and Applicability of the Alkemade Theorem for the Determination of Ternary Phase Diagrams with Intermetallic Phases. TOFA 2014 – 14th Discussion Meeting on Thermodynamics of Alloys, Brno, Czech Republic (2014)
Stein, F.; Li, X.; Palm, M.; Scherf, A.; Janda, D.; Heilmaier, M.: Fe–Al Alloys with Fine-Scaled, Lamellar Microstructure: A New Candidate for Replacing Steels in High-Temperature Structural Applications? 60th Anniversary Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2014)
Stein, F.: Stability, Structure and Mechanical Properties of Transition-Metal-Based Laves Phases. Institut de Chimie et des Matériaux, CNRS-Université Paris Est, Paris, France (2013)
Stein, F.: Experiments on the Peritectoid Decomposition Kinetics of the Intermetallic Phase Nb2Co7. 4th Sino-German Symposium on Computational Thermodynamics and Kinetics and Its Application to Materials Processing, Bochum, Germany (2013)
Stein, F.; Vogel, S. C.: Structure and Stability of the γ Brass-Type High-Temperature Phases in Al-Rich Fe–Al(–Mo) Alloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Vogel, S. C.; Brown, D. W.; Okuniewski, M.; Stebner, A.; Stein, F.: Characterization of Intermetallics with the HIPPO & SMARTS Neutron Beam-Lines at LANSCE. Intermetallics 2013, Educational Center Kloster Banz, Bad Staffelstein, Germany (2013)
He, C.; Stein, F.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb Systems. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; He, C.: Experimental Investigations of the Fe–Al–Nb System: Solidification and Liquidus Surface. HTMC XIV, 14th International IUPAC Conference on High Temperature Materials, Beijing, China (2012)
Stein, F.; Voß, S.; Palm, M.: Mechanical properties of transition-metal laves phases. Plasticity 2012, Symp. on Plasticity and Its Current Applications, San Juan, Puerto Rico (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.