Saksena, A.; Sun, B.; Dong, X.; Khanchandani, H.; Ponge, D.; Gault, B.: Optimizing site-specific specimen preparation for atom probe tomography by using hydrogen for visualizing radiation-induced damage. International Journal of Hydrogen Energy 50 (Part A), pp. 165 - 174 (2024)
Jacob, K.; Khanchandani, H.; Dixit, S.; Jaya, B. N.: Suppression of Reverted Austenite in Cold-Rolled Maraging Steels and Its Impact on Mechanical Properties. Metallurgical and Materials Transactions A 54 (12), pp. 4976 - 4993 (2023)
Khanchandani, H.; Gault, B.: Atomic scale understanding of the role of hydrogen and oxygen segregation in the embrittlement of grain boundaries in a twinning induced plasticity steel. Scripta Materialia 234, 115593 (2023)
Khanchandani, H.; Stephenson, L.; Raabe, D.; Zaefferer, S.; Gault, B.: Hydrogen/Deuterium Charging Methods for the Investigation of Site-Specific Microstructural Features by Atom Probe Tomography. Microscopy and Microanalysis 28 (S1), p. 1664 (2022)
El-Zoka, A.; Kim, S.-H.; Khanchandani, H.; Stephenson, L.; Gault, B.: Advances in Cryo-Atom Probe Tomography Studies on Formation of Nanoporous Metals by Dealloying (Digital Presentation). In ECS Meeting Abstracts, MA2022-01 (47), p. 1983. The Electrochemical Society (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…