Khorashadizadeh, A.; Raabe, D.; Winning, M.; Pippan, R.: Recrystallization and Grain Growth in Ultrafine-Grained Materials Produced by High Pressure Torsion. Advanced Engineering Materials 13, pp. 245 - 250 (2011)
Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.; Rohrer, G. S.; Rollett, A. D.; Winning, M.: Five-Parameter Grain Boundary Analysis by 3D EBSD of an Ultra Fine Grained CuZr Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials 13, pp. 237 - 244 (2011)
Winning, M.; Raabe, D.: Fast, Physically-Based Algorithms for Online Calculations of Texture and Anisotropy during Fabrication of Steel Sheets. Advanced Engineering Materials 12, pp. 1206 - 1211 (2010)
Winning, M.; Brahme, A.; Raabe, D.: Prediction of cold rolling textures of steels using an artificial neural network. Computational Materials Science 46, pp. 800 - 804 (2009)
Khorashadizadeh, A.; Winning, M.; Raabe, D.: 3D tomographic EBSD measurements of heavily deformed ultra fine grained Cu-0.17wt%Zr obtained from ECAP. Materials Science Forum 584-586, pp. 434 - 439 (2008)
Molodova, X.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal stability of ECAP processed pure Copper. Materials Science & Engineering A 460 / 461, pp. 204 - 213 (2007)
Molodova, X.; Khorashadizadeh, A.; Gottstein, G.; Winning, M.; Hellmig, R. J.: Thermal Stability of ECAP Processed Pure Cu and CuZr. Inter. Journal of Materials Research 98, pp. 269 - 275 (2007)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. Materials Science Forum 558 / 559, pp. 1035 - 1042 (2007)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Zaefferer, S.; Kuo, J. C.; Zhao, Z.; Winning, M.; Raabe, D.: On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 51, pp. 4719 - 4735 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.