Pöter, B.; Stein, F.; Wirth, R.; Spiegel, M.: Early stages of protective layer growth on binary iron aluminides. Zeitschrift für physikalische Chemie 219, pp. 1489 - 1503 (2005)
Pöter, B.; Parezanović, I.; Spiegel, M.: In-situ FE-SEM and EBSD Investigation on the Oxidation of Pure Iron. Mater. at High Temp. Proc. of Microscopy of Oxidation, pp. 9 - 18 (2005)
Pöter, B.; Stein, F.; Palm, M.; Spiegel, M.: Oxidation behaviour of Fe–Al alloys analysed using in- and ex-situ techniques. In: Proceedings of EUROCORR`04, 1. EUROCORR`04, Nice, France, 2004. (2004)
Spiegel, M.; Stein, F.; Pöter, B.: Initial Stages of Oxide Growth on Fe–Al Alloys. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Pöter, B.; Spiegel, M.: In-situ FE-SEM and EBSD investigation on the oxidation of pure iron. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Pöter, B.; Spiegel, M.: Studies on the nucleation and growth of oxide films. Gordon Research Conference – High Temperature Corrosion, New London, NH, USA (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…