Dick, A.; Hickel, T.; Neugebauer, J.: Ab Initio Interfacial Austenite/Martensite Energies for Accurate Deformation Mechanism Maps in High-Mn Steels. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: The thermodynamics of Fe-based compounds derived from first principles. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab initio study on the cross-interaction between magnetism and point defects in fcc Fe. Realistic Theories of Correlated Electrons in Condensed Matter, Volga-River, Moscow, Russia (2010)
Neugebauer, J.: Ab initio Multiscale Simulations of Thermodynamic Properties up to the Melting Point. Gordon Research Conference High Temperature Materials, Processes & Diagnostics, Waterville, USA (2010)
Glensk, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio prediction of thermodynamic data for selected phases of the Al-Mg-Si-Cu system. CECAM Summer School on Computational Materials Sciences, San Sebastian, Spain (2010)
Hickel, T.; Dick, A.; Körmann, F.; Neugebauer, J.: Ab initio Bestimmung thermodynamischer Eigenschaften des Legierungssystems Fe-Mn-C. Sitzung FA Computersimulation der DGM, Aachen, Germany (2010)
Marquardt, O.; Gambaryan, K. M.; Aroutiounian, V. M.; Hickel, T.; Neugebauer, J.: Growth process, characterization and optoelectronic properties of InAsSbP dot-pit cooperative nanostructures. VCIAN 2010, Santorini, Greece (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Atomistic study of martensite stability in dilute Fe-based solid solutions. PTM 2010 (Solid-Solid Phase Transformations in Inorganic Materials), Avignon, France (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Duisburg University, Duisburg, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Fritz-Haber-Institut der MPG, Berlin, Germany (2010)
Neugebauer, J.: Utilizing solid-solid phase transitions in the design of novel steels: An ab initio approach. PTM2010 Solid-Solid Phase Transformations in Inorganic Materials, Avignon, France (2010)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio concepts for an efficient and accurate determination of thermodynamic properties up to the melting point. Calphad XXXIX, Jeju Island, South Korea (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…