Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K. J. J.; Hassel, A. W.; Stratmann, M.; Widdel, F.: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology 14 (7), pp. 1772 - 1787 (2012)
Beese, P.; Venzlaff, H.; Enning, D.; Mayrhofer, K. J. J.; Widdel, F.; Stratmann, M.: Monitoring anerobic microbially influenced corrosion with electrochemical frequency modulation. 12th Topical Meeting of the International Society of Electrochemistry & XXII International Symposium on Bioelectrochemistry and Bioenergetics of the Bioelectrochemical Society, Bochum, Germany (2013)
Venzlaff, H.; Enning, D.; Widdel, F.; Stratmann, M.; Hassel, A. W.: A new model for microbiologically influenced corrosion. The European Corrosion Congress Eurocorr 2010, Moscow, Russia (2010)
Venzlaff, H.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a new highly aggressive SRB strain. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Venzlaff, H.; Enning, D. R.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a highly aggressive SRB strain. 2nd International IMPRS-SurMat Workshop on Surface and Interface Engineering in Advanced Materials, Bochum, Germany (2008)
Venzlaff, H.: Die elektrisch mikrobiell beeinflusste Korrosion von Eisen durch sulfatreduzierte Bakterien. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…