Leineweber, A.; Stein, F.: Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation”. Materials and Design 247, 113373 (2024)
Flores, A.; Chatain, S.; Fossati, P.; Stein, F.; Joubert, J.-M.: Correction: Experimental Investigation and Thermodynamic Assessment of the Cr–Mo–Ti System. Journal of Phase Equilibra and Diffusion 45, p. 433 (2024)
Stein, F.; He, C.: About the Alkemade Theorem and the Limits of its Applicability for the Construction of Ternary Liquidus Surfaces. Journal of Phase Equilibra and Diffusion 45, pp. 489 - 501 (2024)
Gedsun, A.; Stein, F.; Palm, M.: Phase Equilibria in the Fe-Al-Nb(-B) System at 700 degrees C. Journal of Phase Equilibra and Diffusion 43 (4), pp. 409 - 418 (2022)
Distl, B.; Hauschildt, K.; Rashkova, B.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part I: Low-Temperature Phase Equilibria Between 700 and 900 °C. Journal of Phase Equilibra and Diffusion 43, pp. 355 - 381 (2022)
Distl, B.; Hauschildt, K.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part II: High-Temperature Phase Equilibria Between 1000 and 1300 °C. Journal of Phase Equilibra and Diffusion 43, pp. 554 - 575 (2022)
Gedsun, A.; Stein, F.; Palm, M.: Development of new Fe–Al–Nb(–B) alloys for structural applications at high temperatures. MRS Advances 6, pp. 176 - 182 (2021)
Stein, F.; Leineweber, A.: Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science 56, pp. 5321 - 5427 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.