Rabe, M.; Toparli, C.; Chen, Y.-H.; Kasian, O.; Mayrhofer, K. J. J.; Erbe, A.: Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution. Physical Chemistry Chemical Physics 21 (20), pp. 10457 - 10469 (2019)
Toparli, C.; Ebin, B.; Gürmen, S.: Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. Journal of Magnetism and Magnetic Materials 423, pp. 133 - 139 (2017)
Toparli, C.; Sarfraz, A.; Erbe, A.: A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies. Physical Chemistry Chemical Physics 17, pp. 31670 - 31679 (2015)
Erbe, A.; Nayak, S.; Chen, Y.-H.; Niu, F.; Pander, M.; Tecklenburg, S.; Toparli, C.: How to probe structure, kinetics and dynamics at complex interfaces in situ and operando by optical spectroscopy. In: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; part of "Reference Module in Chemistry, Molecular Sciences and Chemical Engineering", pp. 199 - 219 (Ed. Wandelt, K.). Elsevier, Waltham, MA, USA (2017)
Toparli, C.: Passivity and passivity breakdown on copper: In situ and operando observation of surface oxides. Dissertation, Ruhr-Universität Bochum, Fakultät Maschinenbau, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…