Li, J.; Pharr, G. M.; Kirchlechner, C.: Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism. Journal of Materials Research 36 (10), pp. 2037 - 2046 (2021)
Luo, W.; Kirchlechner, C.; Li, J.; Dehm, G.; Stein, F.: Composition dependence of hardness and elastic modulus of the cubic and hexagonal NbCo2 Laves phase polytypes studied by nanoindentation. Journal of Materials Research 35 (2), pp. 185 - 195 (2020)
Qin, Y.; Li, J.; Herbig, M.: Microstructural origin of the outstanding durability of the high nitrogen bearing steel X30CrMoN15-1. Materials Characterization 159, 110049 (2020)
Li, J.; Dehm, G.; Kirchlechner, C.: Dislocation source activation by nanoindentation in single crystals and at grain boundaries. E-MRS Spring, Strasbourg, France (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Differences in dislocation source activation stress in the grain interior and at twin boundaries using nanoindentation. Nanobruecken 2018, Erlangen, Germany (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Grain Boundaries acting as dislocation sources. Gordon Research Seminar "Thin Film & Small Scale Mechanical Behavior", Lewiston, ME, USA (2018)
Li, J.: Probing dislocation nucleation in grains and at Ʃ3 twin boundaries of Cu alloys by nanoindentation. Dissertation, Ruhr-Universität Bochum (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.