Chemical fluctuations in polycrystalline thin-films for photovoltaic devices
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
Secondary phase formation as well as chemical fluctuations such as impurity segregation at structural defects like grain boundaries can significantly affect the optoelectronical properties of photovoltaic materials. Within this project we investigate such chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells. We apply combined scanning transmission electron microscopy (STEM) with energy dispersive X-ray spectroscopy (EDX) as well as correlated transmission Kikuchi diffraction (TKD) and atom probe tomography (APT).
Accumulation and diffusion of Na (green) along Cu depleted structural defects (blue) in epitaxial grown CuInSe2 films on GaAs substrate
Mechanistic description of In/Ga interdiffusion. STEM-BF image of a cross section from a Na2Se treated CuInSe2 film grown on GaAs substrate and corresponding Ga, In and Cu elemental maps.
Mechanistic description of In/Ga interdiffusion. STEM-BF image of a cross section from a Na2Se treated CuInSe2 film grown on GaAs substrate and corresponding Ga, In and Cu elemental maps.
Image quality maps from a TKD measurement of an APT needle and corresponding unique color map showing a RHAGB (blue) and ∑3 TB (red). Na & C co-segregation as well as Cu enrichment (blue iso-concentration surface) at the RHAGB. Concentration profile across the RHAGB revealing an atomic redistribution.
Image quality maps from a TKD measurement of an APT needle and corresponding unique color map showing a RHAGB (blue) and ∑3 TB (red). Na & C co-segregation as well as Cu enrichment (blue iso-concentration surface) at the RHAGB. Concentration profile across the RHAGB revealing an atomic redistribution.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…