Chemical fluctuations in polycrystalline thin-films for photovoltaic devices
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
Secondary phase formation as well as chemical fluctuations such as impurity segregation at structural defects like grain boundaries can significantly affect the optoelectronical properties of photovoltaic materials. Within this project we investigate such chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells. We apply combined scanning transmission electron microscopy (STEM) with energy dispersive X-ray spectroscopy (EDX) as well as correlated transmission Kikuchi diffraction (TKD) and atom probe tomography (APT).
Accumulation and diffusion of Na (green) along Cu depleted structural defects (blue) in epitaxial grown CuInSe2 films on GaAs substrate
Mechanistic description of In/Ga interdiffusion. STEM-BF image of a cross section from a Na2Se treated CuInSe2 film grown on GaAs substrate and corresponding Ga, In and Cu elemental maps.
Mechanistic description of In/Ga interdiffusion. STEM-BF image of a cross section from a Na2Se treated CuInSe2 film grown on GaAs substrate and corresponding Ga, In and Cu elemental maps.
Image quality maps from a TKD measurement of an APT needle and corresponding unique color map showing a RHAGB (blue) and ∑3 TB (red). Na & C co-segregation as well as Cu enrichment (blue iso-concentration surface) at the RHAGB. Concentration profile across the RHAGB revealing an atomic redistribution.
Image quality maps from a TKD measurement of an APT needle and corresponding unique color map showing a RHAGB (blue) and ∑3 TB (red). Na & C co-segregation as well as Cu enrichment (blue iso-concentration surface) at the RHAGB. Concentration profile across the RHAGB revealing an atomic redistribution.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.
Thermoelectric materials can convert largely untapped heat energy sources, e.g. geothermal or industrial waste heat, into sustainable electricity. Despite their high potential, efficient thermoelectrics are rare. High thermoelectric conversion efficiency requires high electrical conductivity (σ) but low thermal conductivity (κ), a rare combination…
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…