Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Dehm, G.; Ghidelli, M.: Toward engineered thin film metallic glasses with large mechanical properties: effect of composition and nanostructure. Seminar at Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Paris Nord University, Paris, France (2021)
Brognara, A.; Nasri, I. F. M. A.; Bricchi, B. R.; Li Bassi, A.; Gauchotte, C.; Ghidelli, M.; Lidgi-Guigui, N.: Detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles. Applied Nanotechnology and Nanoscience International Conference – ANNIC 2019, Paris, France (2019)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: On the mechanical properties and thermal stability of ZrxCu100-x thin film metallic glasses with different compositions. Nanobrücken 2021 - Nanomechanical Testing Conference virtual event, Düsseldorf, Germany (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: Effect of composition on mechanical properties and thermal stability of ZrCu thin film metallic glasses. European Materials Research Society (E-MRS) Spring Meeting 2021, Virtual Conference, Strasbourg, France (2021)
Devulapalli, V.; Frommeyer, L.; Ghidelli, M.; Liebscher, C.; Dehm, G.: From epitaxially grown thin films to grain boundary analysis in Cu and Ti. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano, Düsseldorf, Germany (2019)
Brognara, A.: Design of ZrCu thin film metallic glasses with tailored mechanical properties through control of composition and nanostructure. Dissertation, RUB Bochum, Bochum, Germany (2025)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…