Nascimento, A.; Roongta, S.; Diehl, M.; Beyerlein, I. J.: A machine learning model to predict yield surfaces from crystal plasticity simulations. International Journal of Plasticity 161, 103507 (2023)
Otto de Mentock, D.; Roongta, S.; Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F.: Challenges of Developing and Scaling up DAMASK, a Unified Large-strain Multi-physics Crystal Plasticity Simulation Software. TMS - Algorithm Development in Materials Science and Engineering, Orlando, FL, USA (2024)
Roters, F.; do Nascimento, A. W. P.; Roongta, S.; Diehl, M.: An optimized method for the simulation-based determination of initial parameters of advanced yield surfaces for sheet metal forming applications. Complas 2021, online (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…