Philippi, B.; Schießl, A.; Schingale, A.; Dehm, G.: Micromechanical investigation of solder joints for automotive microelectronics. Nano- and Micromechanical Testing in Materials Research and Development IV, Olhão Algarve, Portugal (2013)
Harzer, T. P.; Dehm, G.: Microstructural studies of Cu–Cr thin film structures grown by molecular beam epitaxy using advanced transmission electron microscopy. Macan Theromodynamics Workshop, Istanbul, Turkey (2012)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Dehm, G.; Cordill, M. J.: In-situ fracture study of thin Cu films on polyimide substrate. GDRi MECANO General Meeting 2012, Ecole de Mines, Paris, France (2012)
Eiper, E.; Martinschitz, K. J.; Dehm, G.; Kečkéš, J.: Size effect in metallic thin films characterized by low-temperature X-ray diffraction. Gordon Research Conference on thin film & smallscale mechanical behavior , Colby College Waterville, Maine, USA (2006)
Rester, M.; Kiener, D.; Kreuzer, H. G.M.; Dehm, G.; Motz, C.: Microstructural investigation of the deformation zone below nanoindents in copper, silver and nickel. Hysitron Workshop and Usermeeting, München, Germany (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.